a buffer

10. Cl is

11. NaHCO₃ is

For 1 – 4: It's a solution made by the combination of a weak acid and the salt of its conjugate 12. NaOH is HBr(aq) a. b. NH₃(aq) $H_2O(I)$ For 13 – 18: C. It always dissociates completely in 6. d. HF(aq) a. an acid aqueous solution H₂CO₃(aq) b. a base an acidic salt C. A strip of litmus paper will appear blue in 7. It has a very high Ka 1. d. a basic salt an amphoteric substance At 25 °C, it has a pH > 7 It accepts a proton 13. Amino acids are an example of It is essentially a non-electrolyte For 9 - 12: 3. a strong acid 14. Ammonia is an example of a a. Its aqueous ionization goes virtually to b. a strong base a weak acid completion 15. Ammonium sulfate is an example of C. a weak base a salt (made from an acid and a 16. Aluminum chloride is an example of For 5 - 8: e. base) a Bronsted acid 17. The product of a group IA element and a Bronsted base b. NH₃ is water is an example of a a strong acid a weak base

Q	Statement I	Because	Statement II
19.	The reaction of zinc with hydrochloric acid goes to	Because	Hydrogen gas is evolved from the reaction of zinc and
	completion in an open container		hydrochloric acid.
20.	A 0.2 M solution of carbonic acid is a weaker conductor	Because	In solutions with the same concentration of solute molecules,
	of electricity than a 0.2 M solution of HBr		H ₂ CO ₃ is less dissociated than HBr
21.	An aqueous solution of HI is considered to be a	Because	HI(aq) can accept an H ⁺ ion from another species.
	Bronsted-Lowry base.		
22.	If an acid is added to pure water, it increases the	Because	Adding an acid to water raises the hydrogen ion concentration
	water's pH.		in the water.
23.	Hydrofluoric acid etches glass.	Because	It is a strong acid.
24.	Acetic acid is a strong acid.	Because	Acetic acid ionizes completely in solution.
25.	NH₃ is a Lewis base.	Because	Ammonia can accept a proton.
26.	A 1 N ("normal") solution of H ₂ SO ₄ is the same as a 1M	Because	Molarity refers to the moles of solute per liter of solution,
	("molar") solution of H ₂ SO ₄ .		whereas <i>normality</i> refers to the molarity of hydrogen ions.
27.	The pH of 0.01 M HCl(aq) is 2.	Because	HCl is essentially an ionic species, completely dissociating so that [H⁺] = [HCl].
28.	A solution with a pH of 12 has a higher concentration of	Because	At 25 °C, pH + pOH = 14.
	hydroxide ions than a solution with a pH of 10		
29.	A basic solution has more hydrogen ions than an acidic	Because	At 25 °C, the product of $[H^{+}] \times [OH^{-}] = 10^{-14}$.
	solution.		
30.	Water makes a good buffer	Because	A good buffer will resist changes in pH
31.	When volumes of 1.0 M HCl and 1.0 M NaOH are	Because	The acid and the base form a neutral salt
	mixed, the product mixture is theoretically safe to drink.		
32.	If an acid is added to water with original pH of 7, the	Because	The product of hydroxide ions and hydrogen ions is equal to
	concentration of hydroxide ions will increase.		1.0 x 10 ⁻¹⁴ in all aqueous solutions at 25 °C.

- 33. In HNO₃(aq) + OH (aq) = H₂O(l) + NO₃ (aq), which species is the conjugate acid?
 - a. HNO₃(aq)
 - b. OH (aq)
 - c. $H_2O(I)$
 - d. NO₃ (aq)
 - e. There is no conjugate acid
- **34.** Which is true regarding an aqueous solution of H₃PO₄ at 25 °C?
 - a. It has a very large acid ionization constant
 - b. It has a bitter taste
 - c. The concentration of [OH] > 1.0 x 10⁻⁷ M
 - d. It is a weak electrolyte
 - e. It can be formed by the reaction of a metal oxide and water

- **35.** In NH₃(aq) + H₂CO₃(aq) \Rightarrow NH₄⁺(aq) + HCO₃⁻(aq), NH₄⁺(aq) acts as a(n)
 - a. indicator
 - b. hydrate
 - c. acid
 - d. base
 - e. salt
- **36.** Which of the following are true regarding the aqueous dissociation of HCN, $K_a = 4.9 \times 10^{-10}$ at 25 °C?
 - i. At equilibrium, $[H^{\dagger}] = [CN^{\dagger}]$
 - ii. At equilibrium, $[H^{\dagger}] = [HCN]$
 - iii. HCN is a strong acid
 - a. i only
 - b. ii only
 - c. i and ii only
 - d. ii and iii only
 - e. i, ii and iii

- 37. The reaction of zinc metal and HCl produces which of the following?
 - i. H₂(g)
 - ii. Cl₂(g)
 - iii. ZnCl₂(aq)

18. Bicarbonate ion is an example of a

- a. ii only
- b. iii only
- c. i and ii only
- d. i and iii only
- e. i, ii and iii
- **38.** Which characteristic is associated with Lewis bases?
 - a. React with metal to produce hydrogen gas
 - b. Donate an unshared electron pair
 - c. Always contain the hydroxide ion in its structure
 - d. Taste sour
 - e. Formed by the reaction of a nonmetal oxide and water

- 39. Which of the following is a poor electrolyte?
 - A hydrochloric acid solution
 - A sodium hydroxide solution
 - A vinegar solution C.
 - A sodium chloride solution d.
 - Molten sodium chloride
- 40. A compound that dissolves in water which barely conducts electrical current can probably be
 - A strong electrolyte
 - b. An ionic salt
 - c. A strong acid
 - A strong base
 - None of the above e.
- 41. Which of the following acids is capable of dissolving gold?
 - Hydrochloric
 - b. Nitric
 - Sulfuric C.
 - A combination of A and B
 - A combination of A and C
- 42. A stock solution of 10 M NaOH was used to prepare 2 L of 0.5 M NaOH. How many milliliters of sodium hydroxide stock solution were used?
 - 10 mL
 - 100 mL b.
 - c. 1000 mL
 - d. 200 mL
 - 2000 mL

- 43. What is the hydroxide ion concentration in a solution with a pH of 5?
 - 10⁻³ a.
 - 10⁻⁵ b.
 - 10⁻⁷ c.
 - 10⁻⁹ d.
 - 10⁻¹¹ e.
- What is the H₃O⁺ concentration of a 0.100 M acetic acid solution (K_a =
 - 1.8×10^{-5})?
 - a. 1.8 x 10⁻⁵
 - 1.8 x 10⁻⁴ b.
 - 1.3 x 10⁻² c.
 - 1.3 x 10⁻³ d.
 - 0.9×10^{-3} e.
- 45. What is the pH of a solution with a hydroxide ion concentration of 0.00001 M?
 - a. -5
 - -1 h.
 - c. 5
 - d. 9
 - 14
- 46. A titration experiment is conducted in which 15 mL of a 0.015 M Ba(OH)₂ solution is added to 30 mL of an HCl solution of unknown concentration and titration is

- complete. What is the approximate concentration of the HCl solution?
- 0.015 M
- b. 0.03 M
- 1.5 M c.
- 2.5 M d.
- 3.0 M e.
- 47. An aqueous solution with pH 5 at 25 °C has a hydroxide ion
 - concentration of

 - b.
 - 1 x 10⁻¹¹ M 1 x 10⁻⁹ M 1 x 10⁻⁷ M 1 x 10⁻⁵ M C.
 - 1 x 10⁻³ M e.
- 48. What is the pOH of a solution with $[H^+] = 0.001 \text{ M}$
 - -3 a.
 - b. 1
 - 3 c.
 - d. 11
 - 14
- 49. Which of the following can be used to prepare hydrogen gas in the laboratory?
 - Mercuric oxide
 - b. Acid plus zinc
 - Potassium chlorate
 - Carbon disulfide d.
 - Benzene

- **ANSWERS:**
- 1. 2. В
- 3. С
- 4. Α
- Ε 5. С
- 6. С 7.
- В 8. 9. D
- 10. D
- 11. E
- **12.** B
- 13. Е
- **14.** B
- **16.** C 17.

В

15. C

- 19. TTCE
 - 20. TTCE
 - 21. FF

18. E

- 22. FT
- 23. TF
- 24. FF
- 25. TT
- 26. FT
- 27. TTCE 28. TT
- 29. FT
- 30. FT
- 31. TTCE 32. FT
- **33.** C
- **34.** D

- **35.** C
- 36. Α
- **37.** D **38.** B
- 39.
- 40. E
- 41. D (mixture is called "aqua regia")
- **42.** B
- 43. D
- **44.** D **45.** D
- **46.** A
- 47. В
- **48.** D
- **49.** B