SAT II Review (Acids \& Bases)

For 1-4:
a. $\mathrm{HBr}(\mathrm{aq})$
b. $\quad \mathrm{NH}_{3}(\mathrm{aq})$
c. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
d. $\mathrm{HF}(\mathrm{aq})$
e. $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$
5. It's a solution made by the combination of a weak acid and the salt of its conjugate base
6. It always dissociates completely in aqueous solution
7. It has a very high K_{a}
8. It accepts a proton

For 9-12:
a. a strong acid
b. a strong base
c. a weak acid
d. a weak base
e. a salt (made from an acid and a

base)
9. NH_{3} is
10. Cl^{-}is
11. NaHCO_{3} is
12. NaOH is

For 13-18:
a. an acid
b. a base
c. an acidic salt
d. a basic salt
e. an amphoteric substance
13. Amino acids are an example of
14. Ammonia is an example of a
15. Ammonium sulfate is an example of
16. Aluminum chloride is an example of
17. The product of a group IA element and water is an example of a
18. Bicarbonate ion is an example of a

Q	Statement I	Because	Statement II
19.	The reaction of zinc with hydrochloric acid goes to completion in an open container	Because	Hydrogen gas is evolved from the reaction of zinc and hydrochloric acid.
20.	A 0.2 M solution of carbonic acid is a weaker conductor of electricity than a 0.2 M solution of HBr	Because	In solutions with the same concentration of solute molecules, $\mathrm{H}_{2} \mathrm{CO}_{3}$ is less dissociated than HBr
21.	An aqueous solution of HI is considered to be a Bronsted-Lowry base.	Because	$\mathrm{HI}(\mathrm{aq})$ can accept an H^{+}ion from another species.
22.	If an acid is added to pure water, it increases the water's pH .	Because	Adding an acid to water raises the hydrogen ion concentration in the water.
23.	Hydrofluoric acid etches glass.	Because	It is a strong acid.
24.	Acetic acid is a strong acid.	Because	Acetic acid ionizes completely in solution.
25.	NH_{3} is a Lewis base.	Because	Ammonia can accept a proton.
26.	A 1 N ("normal") solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is the same as a 1 M ("molar") solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$.	Because	Molarity refers to the moles of solute per liter of solution, whereas normality refers to the molarity of hydrogen ions.
27.	The pH of $0.01 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ is 2 .	Because	HCl is essentially an ionic species, completely dissociating so that $\left[\mathrm{H}^{+}\right]=[\mathrm{HCl}]$.
28.	A solution with a pH of 12 has a higher concentration of hydroxide ions than a solution with a pH of 10	Because	At $25{ }^{\circ} \mathrm{C}, \mathrm{pH}+\mathrm{pOH}=14$.
29.	A basic solution has more hydrogen ions than an acidic solution.	Because	At $25{ }^{\circ} \mathrm{C}$, the product of $\left[\mathrm{H}^{+}\right] \times[\mathrm{OH}]=10^{-14}$.
30.	Water makes a good buffer	Because	A good buffer will resist changes in pH
31.	When volumes of 1.0 M HCl and 1.0 M NaOH are mixed, the product mixture is theoretically safe to drink.	Because	The acid and the base form a neutral salt
32.	If an acid is added to water with original pH of 7 , the concentration of hydroxide ions will increase.	Because	The product of hydroxide ions and hydrogen ions is equal to 1.0×10^{-14} in all aqueous solutions at $25^{\circ} \mathrm{C}$.

33. In $\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+$ $\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$, which species is the conjugate acid?
a. $\mathrm{HNO}_{3}(\mathrm{aq})$
b. $\mathrm{OH}^{-}(\mathrm{aq})$
c. $\quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
d. $\quad \mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$
e. There is no conjugate acid
34. Which is true regarding an aqueous solution of $\mathrm{H}_{3} \mathrm{PO}_{4}$ at 25 ${ }^{\circ} \mathrm{C}$?
a. It has a very large acid ionization constant
b. It has a bitter taste
c. The concentration of $\left[\mathrm{OH}^{-}\right]>$ $1.0 \times 10^{-7} \mathrm{M}$
d. It is a weak electrolyte
e. It can be formed by the reaction of a metal oxide and water
35. In $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightleftharpoons$ $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{HCO}_{3}{ }^{-}(\mathrm{aq}), \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$
acts as a(n)
a. indicator
b. hydrate
c. acid
d. base
e. salt
36. Which of the following are true regarding the aqueous dissociation of $\mathrm{HCN}, \mathrm{K}_{\mathrm{a}}=4.9 \times 10^{-10}$ at $25^{\circ} \mathrm{C}$?
i. At equilibrium, $\left[\mathrm{H}^{+}\right]=[\mathrm{CN}]$
ii. At equilibrium, $\left[\mathrm{H}^{+}\right]=[\mathrm{HCN}]$
iii. HCN is a strong acid
a. i only
b. ii only
c. i and ii only
d. ii and iii only
e. i, ii and iii
37. The reaction of zinc metal and HCl produces which of the following?
i. $\mathrm{H}_{2}(\mathrm{~g})$
ii. $\quad \mathrm{Cl}_{2}(\mathrm{~g})$
iii. $\mathrm{ZnCl}_{2}(\mathrm{aq})$
a. ii only
b. iii only
c. i and ii only
d. i and iii only
e. i, ii and iii
38. Which characteristic is associated with Lewis bases?
a. React with metal to produce hydrogen gas
b. Donate an unshared electron pair
c. Always contain the hydroxide ion in its structure
d. Taste sour
e. Formed by the reaction of a nonmetal oxide and water
39. Which of the following is a poor electrolyte?
a. A hydrochloric acid solution
b. A sodium hydroxide solution
c. A vinegar solution
d. A sodium chloride solution
e. Molten sodium chloride
40. A compound that dissolves in water which barely conducts electrical current can probably be
a. A strong electrolyte
b. An ionic salt
c. A strong acid
d. A strong base
e. None of the above
41. Which of the following acids is capable of dissolving gold?
a. Hydrochloric
b. Nitric
c. Sulfuric
d. A combination of A and B
e. A combination of A and C
42. A stock solution of 10 M NaOH was used to prepare 2 L of 0.5 M NaOH . How many milliliters of sodium hydroxide stock solution were used?
a. $\quad 10 \mathrm{~mL}$
b. $\quad 100 \mathrm{~mL}$
c. $\quad 1000 \mathrm{~mL}$
d. $\quad 200 \mathrm{~mL}$
e. 2000 mL
43. What is the hydroxide ion concentration in a solution with a pH of 5 ?
a. $\quad 10^{-3}$
b. $\quad 10^{-5}$
c. 10^{-7}
d. 10^{-9}
e. 10^{-11}
44. What is the $\mathrm{H}_{3} \mathrm{O}^{+}$concentration of a 0.100 M acetic acid solution ($\mathrm{K}_{\mathrm{a}}=$
1.8×10^{-5})?
a. 1.8×10^{-5}
b. $\quad 1.8 \times 10^{-4}$
c. $\quad 1.3 \times 10^{-2}$
d. 1.3×10^{-3}
e. $\quad 0.9 \times 10^{-3}$
45. What is the pH of a solution with a hydroxide ion concentration of 0.00001 M ?
a. -5
b. -1
c. 5
d. 9
e. 14
46. A titration experiment is conducted in which 15 mL of a 0.015 M
$\mathrm{Ba}(\mathrm{OH})_{2}$ solution is added to 30 mL of an HCl solution of unknown concentration and titration is
complete. What is the approximate
concentration of the HCl solution?
a. $\quad 0.015 \mathrm{M}$
b. $\quad 0.03 \mathrm{M}$
c. $\quad 1.5 \mathrm{M}$
d. $\quad 2.5 \mathrm{M}$
e. $\quad 3.0 \mathrm{M}$
47. An aqueous solution with pH 5 at $25^{\circ} \mathrm{C}$ has a hydroxide ion
concentration of
a. $1 \times 10^{-11} \mathrm{M}$
b. $\quad 1 \times 10^{-9} \mathrm{M}$
c. $1 \times 10^{-7} \mathrm{M}$
d. $1 \times 10^{-5} \mathrm{M}$
e. $1 \times 10^{-3} \mathrm{M}$
48. What is the pOH of a solution with $\left[\mathrm{H}^{+}\right]=0.001 \mathrm{M}$
a. -3
b. 1
c. 3
d. 11
e. 14
49. Which of the following can be used to prepare hydrogen gas in the laboratory?
a. Mercuric oxide
b. Acid plus zinc
c. Potassium chlorate
d. Carbon disulfide
e. Benzene

ANSWERS:

1. B
2. B
3. C
4. A
5. E
6. C
7. C
8. B
9. D
10. D
11. E
12. B
13. E
14. B
15. C
16. C
17. B
18. E
19. T T CE
20. TTCE
21. FF
22. FT
23. $T F$
24. FF
25. T T
26. FT
27. T T CE
28. T T
29. FT
30. FT
31. TTCE
32. FT
33. C
34. D
35. C
36. A
37. D
38. B
39. C
40. E
41. D (mixture is called "aqua regia")
42. B
43. D
44. D
45. D
46. A
47. B
48. D
49. B
