For 1-5:
a. 0
b. -1
c. +1
d. -2
e. +2

1. The oxidation number of Na in NaCl
2. The oxidation number of Cl in Cl_{2}
3. The oxidation number of S in $\mathrm{Na}_{2} \mathrm{~S}$
4. The charge of calcium in CaCl_{2}
5. The charge of chlorine in KCl
For 6-8:
a. $\mathrm{Zn}(\mathrm{s})$
b. $\quad \mathrm{Cu}^{2+}(\mathrm{aq})$
c. $\mathrm{Zn}^{2+}(\mathrm{aq})$
d. $\mathrm{Cu}(\mathrm{s})$
e. $\mathrm{H}_{2} \mathrm{O}$
6. Acts as the anode
7. Acts as the cathode
8. Is reduced

For 9-13:
a. group IA
b. group IIA
c. group IIIA
d. group VIA
e. group VIIA
9. \qquad ${ }_{3}\left(\mathrm{PO}_{4}\right)_{2}$
10. \qquad
11. Cu \qquad
12. Good reducing agents
13. Group represented by the Lewis dot structure below

- \dot{X} •

For 14-15:
a. 1
b. 2
c. 3
d. 4
e. 5
14. When the following equation $\mathrm{HMnO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{3} \rightarrow \mathrm{MnSO}_{4}$ $+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{SO}_{4}$ is balanced, the coefficient, in the lowest whole number, of $\mathrm{H}_{2} \mathrm{SO}_{3}$ is
15. When the following equation $\mathrm{Br}_{2}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$ +HBr is balanced, the coefficient, in the lowest whole number, of HBr is

Q	Statement I	Because	Statement II
16.	Cu^{2+} ion needs to be oxidized to form Cu metal	Because	Oxidation is the gain of electrons
17.	The anions migrate to the cathode in an electrochemical reaction	Because	Positively charged ions are attracted to the negatively charged electrode
18.	The alkali metals are strong oxidizing agents	Because	The one electron in their valence shell is easily lost
19.	The standard reduction potential for $\mathrm{Ag}^{+}+\mathrm{e}^{-}$ $\rightarrow \mathrm{Ag}$ is half that of $2 \mathrm{Ag}^{+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Ag}$	Because	Standard potential is dependent on the number of electrons transferred
20.	Chloride ions, Cl°, can be oxidized to produce chlorine gas	Because	Two chloride ions gives up an electron to form Cl_{2}
21.	The oxidation state of Cr in $\mathrm{Al}_{2}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}\right)_{3}$ is +3	Because	As a neutral compound, the sum of the oxidation numbers of all the atoms must equal zero
22.	The electrolysis of potassium iodide, KI, produces electrical energy	Because	Electrolytic cells convert chemical energy into electrical energy
23.	An ionic solid is a good conductor of electricity	Because	An ionic solid is composed of positive and negative ions joined together by electrostatic forces
24.	Elemental sodium is a good reducing agent	Because	An atom of elemental sodium gives up its valence electron readily

25. What's the potential of the reaction below given the half-reaction potentials:
$2 \mathrm{Fe}^{2+}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Fe}^{3+}+2 \mathrm{Cl}^{-}$
$\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+} ; \mathrm{E}=0.77 \mathrm{~V}$
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-} ; \mathrm{E}=1.36 \mathrm{~V}$
a. 0.18 V
b. 0.59 V
c. 1.05 V
d. 2.13 V
e. 2.90 V
26. For $\mathrm{Cu}(\mathrm{s})+\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})+$ $\mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{NO}_{2}(\mathrm{~g})$ $+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$, when the equation is balanced what is the coefficient of H^{+}?
a. 1
b. 2
c. 3
d. 4
e. 5
27. For $\mathrm{Cu}(\mathrm{s})+\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})+$ $\mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{NO}_{2}(\mathrm{~g})$
$+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$, which of the following takes place?
a. $\mathrm{Cu}(\mathrm{s})$ is oxidized
b. $\mathrm{H}^{+}(\mathrm{aq})$ is oxidized
c. $\mathrm{Cu}(\mathrm{s})$ is reduced
d. $\mathrm{H}^{+}(\mathrm{aq})$ is reduced
e. $\mathrm{NO}_{3}{ }^{-}$is oxidized
28. The standard reduction potential of $\mathrm{Cu}^{2+}(\mathrm{aq})$ is +0.34 V . What is the oxidation potential of $\mathrm{Cu}(\mathrm{s})$?
a. +0.68 V
b. +0.34 V
c. -0.34 V
d. -0.68 V
29. If the following reactions are used to make a galvanic cell, which species will be reduced and which species will be oxidized?
$\mathrm{F}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{~F}^{-}(\mathrm{aq}) ;$
$\mathrm{E}=+2.87 \mathrm{~V}$
$\mathrm{Ca}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Ca}(\mathrm{s})$;

$$
E=-2.76 \mathrm{~V}
$$

a. F will be oxidized and Ca^{2+} will be reduced
b. Ca^{2+} will be oxidized and F_{2} will be reduced
c. $\mathrm{Ca}(\mathrm{s})$ will be oxidized and F_{2} will be reduced
d. F_{2} will be oxidized and $\mathrm{Ca}(\mathrm{s})$ will be reduced
30. What is the oxidation number of Mn in KMnO_{4} ?
a. -7
b. -3
c. 0
d. +3
e. +7
31. Which of the following is true of an electrolytic cell?
a. An electric current causes an otherwise non-spontaneous chemical reaction to occur.
b. Reduction occurs at the anode
c. A spontaneous electrochemical reaction produces an electric current
d. The electrode to which the electrons flow is where oxidation occurs
e. None of the above
32. What is the sum of the coefficients of the products for the following reaction?
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{HCl} \rightarrow \mathrm{KCl}+$
$\mathrm{CrCl}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
a. 10
b. 12
c. 13
d. 14
e. 15
33. The oxidation number of sulfur in NaHSO_{4} ?
a. 0
b. +2
c. -2
d. +4
e. +6
34. How many moles of electrons are required to reduce 103.6 g of lead from Pb^{2+} to the metal?
a. 0.5 mole
b. 1 mole
c. 2 moles
d. 4 moles
e. 8 moles
35. The order of decreasing strength as reducing agents is:
a. $\mathrm{Na}, \mathrm{Mg}, \mathrm{Fe}, \mathrm{Ag}, \mathrm{Cu}$
b. $\mathrm{Mg}, \mathrm{Na}, \mathrm{Fe}, \mathrm{Cu}, \mathrm{Ag}$
c. $\mathrm{Ag}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Mg}, \mathrm{Na}$
d. $\mathrm{Na}, \mathrm{Fe}, \mathrm{Mg}, \mathrm{Cu}, \mathrm{Ag}$
e. $\mathrm{Na}, \mathrm{Mg}, \mathrm{Fe}, \mathrm{Cu}, \mathrm{Ag}$
36. Electrolysis of a dilute solution of aqueous sodium chloride results in the cathode product
a. Sodium
b. Hydrogen
c. Chlorine
d. Oxygen
e. peroxide
37. For the following reactions:
$\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 e^{-} ; \mathrm{E}=+0.76 \mathrm{~V}$
$\mathrm{Au} \rightarrow \mathrm{Au}^{3+}+3 \mathrm{e}^{-} ; \mathrm{E}=-1.42 \mathrm{~V}$
If gold foil is placed in a solution containing Zn^{2+}, the reaction potential would be:
a. -1.34 V
b. -2.18 V
c. -0.66 V
d. +2.18 V
e. +1.34 V
38. In the electrolysis of molten copper chloride, the substance liberated at the anode is
a. Copper
b. Chlorine
c. Hydrogen
d. Copper chloride
e. None of the above

ANSWERS:

1. C
2. A
3. D
4. E
5. B
6. A
7. D
8. B
9. B
10. A
11. E
12. A
13. C
14. E
15. B
16. F F
17. FT
18. FT
19. F F
20. T T CE
21. FT
22. FT
23. FT
24. T T CE
25. B
26. D
27. A
28. C
29. C
30. E
31. A
32. D
33. E
34. B
35. E
36. B
37. B
38. B
