Section 3: Math Test - No Calculator

QUESTION 1.

Choice \mathbf{C} is correct. Subtracting 6 from each side of $5 x+6=10$ yields $5 x=4$. Dividing both sides of $5 x=4$ by 5 yields $x=\frac{4}{5}$. The value of x can now be substituted into the expression $10 x+3$, giving $10\left(\frac{4}{5}\right)+3=11$.
Alternatively, the expression $10 x+3$ can be rewritten as $2(5 x+6)-9$, and 10 can be substituted for $5 x+6$, giving $2(10)-9=11$.

Choices A, B, and D are incorrect. Each of these choices leads to $5 x+6 \neq 10$, contradicting the given equation, $5 x+6=10$. For example, choice A is incorrect because if the value of $10 x+3$ were 4 , then it would follow that $x=0.1$, and the value of $5 x+6$ would be 6.5 , not 10 .

QUESTION 2.

Choice B is correct. Multiplying each side of $x+y=0$ by 2 gives $2 x+2 y=0$. Then, adding the corresponding sides of $2 x+2 y=0$ and $3 x-2 y=10$ gives $5 x=10$. Dividing each side of $5 x=10$ by 5 gives $x=2$. Finally, substituting 2 for x in $x+y=0$ gives $2+y=0$, or $y=-2$. Therefore, the solution to the given system of equations is $(2,-2)$.

Alternatively, the equation $x+y=0$ can be rewritten as $x=-y$, and substituting x for $-y$ in $3 x-2 y=10$ gives $5 x=10$, or $x=2$. The value of y can then be found in the same way as before.

Choices A, C, and D are incorrect because when the given values of x and y are substituted into $x+y=0$ and $3 x-2 y=10$, either one or both of the equations are not true. These answers may result from sign errors or other computational errors.

QUESTION 3.

Choice A is correct. The price of the job, in dollars, is calculated using the expression $60+12 n h$, where 60 is a fixed price and $12 n h$ depends on the number of landscapers, n, working the job and the number of hours, h, the job takes those n landscapers. Since $n h$ is the total number of hours of work done when n landscapers work h hours, the cost of the job increases by $\$ 12$ for each hour a landscaper works. Therefore, of the choices given, the best interpretation of the number 12 is that the company charges $\$ 12$ per hour for each landscaper.

Choice B is incorrect because the number of landscapers that will work each job is represented by n in the equation, not by the number 12 . Choice C is incorrect because the price of the job increases by $12 n$ dollars each hour, which will not be equal to 12 dollars unless $n=1$. Choice D is incorrect because the total number of hours each landscaper works is equal to h. The number of hours each landscaper works in a day is not provided.

QUESTION 4.

Choice \mathbf{A} is correct. If a polynomial expression is in the form $(x)^{2}+2(x)(y)+$ $(y)^{2}$, then it is equivalent to $(x+y)^{2}$. Because $9 a^{4}+12 a^{2} b^{2}+4 b^{4}=\left(3 a^{2}\right)^{2}+$ $2\left(3 a^{2}\right)\left(2 b^{2}\right)+\left(2 b^{2}\right)^{2}$, it can be rewritten as $\left(3 a^{2}+2 b^{2}\right)^{2}$.

Choice B is incorrect. The expression $(3 a+2 b)^{4}$ is equivalent to the product $(3 a+2 b)(3 a+2 b)(3 a+2 b)(3 a+2 b)$. This product will contain the term $4(3 a)^{3}(2 b)=216 a^{3} b$. However, the given polynomial, $9 a^{4}+12 a^{2} b^{2}+4 b^{4}$, does not contain the term $216 a^{3} b$. Therefore, $9 a^{4}+12 a^{2} b^{2}+4 b^{4} \neq(3 a+2 b)^{4}$. Choice C is incorrect. The expression $\left(9 a^{2}+4 b^{2}\right)^{2}$ is equivalent to the product $\left(9 a^{2}+4 b^{2}\right)\left(9 a^{2}+4 b^{2}\right)$. This product will contain the term ($9 a^{2}$) $\left(9 a^{2}\right)=81 a^{4}$. However, the given polynomial, $9 a^{4}+12 a^{2} b^{2}+4 b^{4}$, does not contain the term $81 a^{4}$. Therefore, $9 a^{4}+12 a^{2} b^{2}+4 b^{4} \neq\left(9 a^{2}+4 b^{2}\right)^{2}$. Choice D is incorrect. The expression $(9 a+4 b)^{4}$ is equivalent to the product $(9 a+4 b)(9 a+4 b)(9 a+4 b)(9 a+4 b)$. This product will contain the term $(9 a)(9 a)(9 a)(9 a)=6,561 a^{4}$. However, the given polynomial, $9 a^{4}+$ $12 a^{2} b^{2}+4 b^{4}$, does not contain the term $6,561 a^{4}$. Therefore, $9 a^{4}+12 a^{2} b^{2}+$ $4 b^{4} \neq(9 a+4 b)^{4}$.

QUESTION 5.

Choice C is correct. Since $\sqrt{2 k^{2}+17}-x=0$, and $x=7$, one can substitute 7 for x, which gives $\sqrt{2 k^{2}+17}-7=0$. Adding 7 to each side of $\sqrt{2 k^{2}+17}-7=0$ gives $\sqrt{2 k^{2}+17}=7$. Squaring each side of $\sqrt{2 k^{2}+17}=7$ will remove the square root symbol: $\left(\sqrt{2 k^{2}+17}\right)^{2}=(7)^{2}$, or $2 k^{2}+17=49$. Then subtracting 17 from each side of $2 k^{2}+17=49$ gives $2 k^{2}=49-17=32$, and dividing each side of $2 k^{2}=32$ by 2 gives $k^{2}=16$. Finally, taking the square root of each side of $k^{2}=16$ gives $k= \pm 4$, and since the problem states that $k>0$, it follows that $k=4$.

Since the sides of an equation were squared while solving $\sqrt{2 k^{2}+17}-7=0$, it is possible that an extraneous root was produced. However, substituting 4 for k in $\sqrt{2 k^{2}+17}-7=0$ confirms that 4 is a solution for $k: \sqrt{2(4)^{2}+17}-7=$ $\sqrt{32+17}-7=\sqrt{49}-7=7-7=0$.

Choices A, B, and D are incorrect because substituting any of these values for k in $\sqrt{2 k^{2}+17-7}=0$ does not yield a true statement.

QUESTION 6.

Choice \mathbf{D} is correct. Since lines ℓ and k are parallel, the lines have the same slope. Line ℓ passes through the points $(-5,0)$ and $(0,2)$, so its slope is $\frac{0-2}{-5-0}$, which is $\frac{2}{5}$. The slope of line k must also be $\frac{2}{5}$. Since line k has slope $\frac{2}{5}$ and passes through the points $(0,-4)$ and $(p, 0)$, it follows that $\frac{-4-0}{0-p}=\frac{2}{5}$, or $\frac{4}{p}=\frac{2}{5}$. Multiplying each side of $\frac{4}{p}=\frac{2}{5}$ by $5 p$ gives $20=2 p$, and therefore, $p=10$.

Choices A, B, and C are incorrect and may result from conceptual or calculation errors.

QUESTION 7.

Choice A is correct. Since the numerator and denominator of $\frac{x^{a^{2}}}{x^{b^{2}}}$ have a common base, it follows by the laws of exponents that this expression can be rewritten as $x^{a^{2}-b^{2}}$. Thus, the equation $\frac{x^{a^{2}}}{x^{b^{2}}}=16$ can be rewritten as $x^{a^{2}-b^{2}}=x^{16}$. Because the equivalent expressions have the common base x, and $x>1$, it follows that the exponents of the two expressions must also be equivalent. Hence, the equation $a^{2}-b^{2}=16$ must be true. The left-hand side of this new equation is a difference of squares, and so it can be factored: $(a+b)(a-b)=16$. It is given that $(a+b)=2$; substituting 2 for the factor $(a+b)$ gives $2(a-b)=16$. Finally, dividing both sides of $2(a-b)=16$ by 2 gives $a-b=8$.

Choices B, C, and D are incorrect and may result from errors in applying the laws of exponents or errors in solving the equation $a^{2}-b^{2}=16$.

QUESTION 8.

Choice \mathbf{C} is correct. The relationship between n and A is given by the equation $n A=360$. Since n is the number of sides of a polygon, n must be a positive integer, and so $n A=360$ can be rewritten as $A=\frac{360}{n}$. If the value of A is greater than 50 , it follows that $\frac{360}{n}>50$ is a true statement. Thus, $50 n<360$, or $n<\frac{360}{50}=7.2$. Since n must be an integer, the greatest possible value of n is 7 .
Choices A and B are incorrect. These are possible values for n, the number of sides of a regular polygon, if $A>50$, but neither is the greatest possible value of n. Choice D is incorrect. If $A<50$, then $n=8$ is the least possible value of n, the number of sides of a regular polygon. However, the question asks for the greatest possible value of n if $A>50$, which is $n=7$.

QUESTION 9.

Choice \mathbf{B} is correct. Since the slope of the first line is 2 , an equation of this line can be written in the form $y=2 x+c$, where c is the y-intercept of the line. Since the line contains the point $(1,8)$, one can substitute 1 for x and 8 for y in $y=2 x+c$, which gives $8=2(1)+c$, or $c=6$. Thus, an equation of the first line is $y=2 x+6$. The slope of the second line is equal to $\frac{1-2}{2-1}$ or -1 . Thus, an equation of the second line can be written in the form $y=-x+d$, where d is the y-intercept of the line. Substituting 2 for x and 1 for y gives $1=-2+d$, or $d=3$. Thus, an equation of the second line is $y=-x+3$.

Since a is the x-coordinate and b is the y-coordinate of the intersection point of the two lines, one can substitute a for x and b for y in the two equations, giving the system $b=2 a+6$ and $b=-a+3$. Thus, a can be found by solving the equation $2 a+6=-a+3$, which gives $a=-1$. Finally, substituting -1 for a into the equation $b=-a+3$ gives $b=-(-1)+3$, or $b=4$. Therefore, the value of $a+b$ is 3 .

Alternatively, since the second line passes through the points $(1,2)$ and $(2,1)$, an equation for the second line is $x+y=3$. Thus, the intersection point of the first line and the second line, (a, b) lies on the line with equation $x+y=3$. It follows that $a+b=3$.

Choices A and C are incorrect and may result from finding the value of only a or b, but not calculating the value of $a+b$. Choice D is incorrect and may result from a computation error in finding equations of the two lines or in solving the resulting system of equations.

QUESTION 10.

Choice \mathbf{C} is correct. Since the square of any real number is nonnegative, every point on the graph of the quadratic equation $y=(x-2)^{2}$ in the $x y$-plane has a nonnegative y-coordinate. Thus, $y \geq 0$ for every point on the graph. Therefore, the equation $y=(x-2)^{2}$ has a graph for which y is always greater than or equal to -1 .

Choices A, B, and D are incorrect because the graph of each of these equations in the $x y$-plane has a y-intercept at $(0,-2)$. Therefore, each of these equations contains at least one point where y is less than -1 .

QUESTION 11.

Choice \mathbf{C} is correct. To perform the division $\frac{3-5 i}{8+2 i}$, multiply the numerator and denominator of $\frac{3-5 i}{8+2 i}$ by the conjugate of the denominator, $8-2 i$. This gives $\frac{(3-5 i)(8-2 i)}{(8+2 i)(8-2 i)}=\frac{24-6 i-40 i+(-5 i)(-2 i)}{8^{2}-(2 i)^{2}}$. Since $i^{2}=-1$, this can be simplified to $\frac{24-6 i-40 i-10}{64+4}=\frac{14-46 i}{68}$, which then simplifies to $\frac{7}{34}-\frac{23 i}{34}$.

Choices A and B are incorrect and may result from misconceptions about fractions. For example, $\frac{a+b}{c+d}$ is equal to $\frac{a}{c+d}+\frac{b}{c+d}$, not $\frac{a}{c}+\frac{b}{d}$. Choice D is incorrect and may result from a calculation error.

QUESTION 12.

Choice B is correct. Multiplying each side of $R=\frac{F}{N+F}$ by $N+F$ gives $R(N+F)=F$, which can be rewritten as $R N+R F=F$. Subtracting $R F$ from each side of $R N+R F=F$ gives $R N=F-R F$, which can be factored
as $R N=F(1-R)$. Finally, dividing each side of $R N=F(1-R)$ by $1-R$, expresses F in terms of the other variables: $F=\frac{R N}{1-R}$.
Choices A, C, and D are incorrect and may result from calculation errors when rewriting the given equation.

QUESTION 13.

Choice \mathbf{D} is correct. The problem asks for the sum of the roots of the quadratic equation $2 m^{2}-16 m+8=0$. Dividing each side of the equation by 2 gives $m^{2}-8 m+4=0$. If the roots of $m^{2}-8 m+4=0$ are s_{1} and s_{2}, then the equation can be factored as $m^{2}-8 m+4=\left(m-s_{1}\right)\left(m-s_{2}\right)=0$. Looking at the coefficient of x on each side of $m^{2}-8 m+4=\left(m-s_{1}\right)\left(m-s_{2}\right)$ gives $-8=-s_{1}-s_{2}$, or $s_{1}+s_{2}=8$.

Alternatively, one can apply the quadratic formula to either $2 m^{2}-16 m+8=0$ or $m^{2}-8 m+4=0$. The quadratic formula gives two solutions, $4-2 \sqrt{3}$ and $4+2 \sqrt{3}$ whose sum is 8 .

Choices A, B, and C are incorrect and may result from calculation errors when applying the quadratic formula or a sign error when determining the sum of the roots of a quadratic equation from its coefficients.

QUESTION 14.

Choice A is correct. Each year, the amount of the radioactive substance is reduced by 13 percent from the prior year's amount; that is, each year, 87 percent of the previous year's amount remains. Since the initial amount of the radioactive substance was 325 grams, after 1 year, $325(0.87)$ grams remains; after 2 years $325(0.87)(0.87)=325(0.87)^{2}$ grams remains; and after t years, $325(0.87)^{t}$ grams remains. Therefore, the function $f(t)=325(0.87)^{t}$ models the remaining amount of the substance, in grams, after t years.

Choice B is incorrect and may result from confusing the amount of the substance remaining with the decay rate. Choices C and D are incorrect and may result from confusing the original amount of the substance and the decay rate.

QUESTION 15.

Choice \mathbf{D} is correct. Dividing $5 x-2$ by $x+3$ gives:
$x + 3 \longdiv { 5 x - 2 }$
$5 x+15$
-17
Therefore, the expression $\frac{5 x-2}{x+3}$ can be rewritten as $5-\frac{17}{x+3}$.
Alternatively, $\frac{5 x-2}{x+3}$ can be rewritten as
$\frac{5 x-2}{x+3}=\frac{(5 x+15)-15-2}{x+3}=\frac{5(x+3)-17}{x+3}=5-\frac{17}{x+3}$.

Choices A and B are incorrect and may result from incorrectly canceling out the x in the expression $\frac{5 x-2}{x+3}$. Choice C is incorrect and may result from finding an incorrect remainder when performing long division.

QUESTION 16.

The correct answer is $\mathbf{3 , 6}$, or 9 . Let x be the number of $\$ 250$ bonuses awarded, and let y be the number of $\$ 750$ bonuses awarded. Since $\$ 3000$ in bonuses were awarded, and this included at least one $\$ 250$ bonus and one $\$ 750$ bonus, it follows that $250 x+750 y=3000$, where x and y are positive integers. Dividing each side of $250 x+750 y=3000$ by 250 gives $x+3 y=12$, where x and y are positive integers. Since $3 y$ and 12 are each divisible by 3 , it follows that $x=12-3 y$ must also be divisible by 3 . If $x=3$, then $y=3$; if $x=6$, then $y=2$; and if $x=9$, then $y=1$. If $x=12$, then $y=0$, but this is not possible since there was at least one $\$ 750$ bonus awarded. Therefore, the possible numbers of $\$ 250$ bonuses awarded are 3, 6, and 9. Any of the numbers 3,6 , or 9 may be gridded as the correct answer.

OUESTION 17.

The correct answer is 19. Since $2 x(3 x+5)+3(3 x+5)=a x^{2}+b x+c$ for all values of x, the two sides of the equation are equal, and the value of b can be determined by simplifying the left-hand side of the equation and writing it in the same form as the right-hand side. Using the distributive property, the equation becomes $\left(6 x^{2}+10 x\right)+(9 x+15)=a x^{2}+b x+c$. Combining like terms gives $6 x^{2}+19 x+15=a x^{2}+b x+c$. The value of b is the coefficient of x, which is 19 .

OUESTION 18.

The correct answer is 12. Angles $A B E$ and $D B C$ are vertical angles and thus have the same measure. Since segment $A E$ is parallel to segment $C D$, angles A and D are of the same measure by the alternate interior angle theorem. Thus, by the angle-angle theorem, triangle $A B E$ is similar to triangle $D B C$, with vertices A, B, and E corresponding to vertices D, B, and C, respectively. Thus, $\frac{A B}{D B}=\frac{E B}{C B}$ or $\frac{10}{5}=\frac{8}{C B}$. It follows that $C B=4$, and so $C E=C B+B E=$ $4+8=12$.

OUESTION 19.

The correct answer is $\mathbf{6}$. By the distance formula, the length of radius $O A$ is $\sqrt{(\sqrt{3})^{2}+1^{2}}=\sqrt{3+1}=2$. Thus, $\sin (\angle A O B)=\frac{1}{2}$. Therefore, the measure of $\angle A O B$ is 30°, which is equal to $30\left(\frac{\pi}{180}\right)=\frac{\pi}{6}$ radians. Hence, the value of a is 6 .

QUESTION 20.

The correct answer is $\frac{\mathbf{1}}{\mathbf{4}}$ or .25. In order for a system of two linear equations to have infinitely many solutions, the two equations must be equivalent.

Thus, the equation $a x+b y=12$ must be equivalent to the equation $2 x+$ $8 y=60$. Multiplying each side of $a x+b y=12$ by 5 gives $5 a x+5 b y=60$, which must be equivalent to $2 x+8 y=60$. Since the right-hand sides of $5 a x+5 b y=60$ and $2 x+8 y=60$ are the same, equating coefficients gives $5 a=2$, or $a=\frac{2}{5}$, and $5 b=8$, or $b=\frac{8}{5}$. Therefore, the value of $\frac{a}{b}=\left(\frac{2}{5}\right) \div\left(\frac{8}{5}\right)$, which is equal to $\frac{1}{4}$. Either the fraction $\frac{1}{4}$ or its equivalent decimal, .25 , may be gridded asthe correct answer.

Alternatively, since $a x+b y=12$ is equivalent to $2 x+8 y=60$, the equation $a x+b y=12$ is equal to $2 x+8 y=60$ multiplied on each side by the same constant. Since multiplying $2 x+8 y=60$ by a constant does not change the ratio of the coefficient of x to the coefficient of y, it follows that $\frac{a}{b}=\frac{2}{8}=\frac{1}{4}$.

Section 4: Math Test - Calculator

QUESTION 1.

Choice C is correct. Since the musician earns $\$ 0.09$ for each download, the musician earns $0.09 d$ dollars when the song is downloaded d times. Similarly, since the musician earns $\$ 0.002$ each time the song is streamed, the musician earns $0.002 s$ dollars when the song is streamed s times. Therefore, the musician earns a total of $0.09 d+0.002 s$ dollars when the song is downloaded d times and streamed s times.

Choice A is incorrect because the earnings for each download and the earnings for time streamed are interchanged in the expression. Choices B and D are incorrect because in both answer choices, the musician will lose money when a song is either downloaded or streamed. However, the musician only earns money, not loses money, when the song is downloaded or streamed.

QUESTION 2.

Choice B is correct. The quality control manager selects 7 lightbulbs at random for inspection out of every 400 lightbulbs produced. A quantity of 20,000 lightbulbs is equal to $\frac{20,000}{400}=50$ batches of 400 lightbulbs. Therefore, at the rate of 7 lightbulbs per 400 lightbulbs produced, the quality control manager will inspect a total of $50 \times 7=350$ lightbulbs.

Choices A, C, and D are incorrect and may result from calculation errors or misunderstanding of the proportional relationship.

QUESTION 3.

Choice \mathbf{A} is correct. The value of m when ℓ is 73 can be found by substituting the 73 for ℓ in $\ell=24+3.5 m$ and then solving for m. The resulting equation is $73=24+3.5 m$; subtracting 24 from each side gives $49=3.5 m$. Then, dividing each side of $49=3.5 m$ by 3.5 gives $14=m$. Therefore, when ℓ is $73, m$ is 14 .

